This website is intended for Medical Professionals only. By using this site you confirm that you are a healthcare professional.

News
Recurrent miscarriage: diabetes drug could ... An existing drug can be used to improve the womb for pregnancy, ... (08 Jan 2020)
Nerve Stimulation May Benefit Women with ... A treatment involving electrical nerve stimulation helped women ... (08 Jan 2020)
Cancer drugs could potentially treat COPD, ... New research from the University of Sheffield shows a certain ... (08 Jan 2020)
Tea drinkers live longer Drinking tea at least three times a week is linked with a longer ... (08 Jan 2020)

It May Take Guts to Cure Diabetes

By switching off a single gene, scientists at Columbia University’s Naomi Berrie Diabetes Center have converted human gastrointestinal cells into insulin-producing cells, demonstrating in principle that a drug could retrain cells inside a person’s GI tract to produce insulin.
The new research was reported today in the online issue of the journal Nature Communications.
“People have been talking about turning one cell into another for a long time, but until now we hadn’t gotten to the point of creating a fully functional insulin-producing cell by the manipulation of a single target,” said the study’s senior author, Domenico Accili, MD, the Russell Berrie Foundation Professor of Diabetes (in Medicine) at Columbia University Medical Center (CUMC).
The finding raises the possibility that cells lost in type 1 diabetes may be more easily replaced through the reeducation of existing cells than through the transplantation of new cells created from embryonic or adult stem cells.


For nearly two decades, researchers have been trying to make surrogate insulin-producing cells for type 1 diabetes patients. In type 1 diabetes, the body’s natural insulin-producing cells are destroyed by the immune system.
Although insulin-producing cells can now be made in the lab from stem cells, these cells do not yet have all the functions of naturally occurring pancreatic beta cells.
This has led some researchers to try instead to transform existing cells in a patient into insulin-producers. Previous work by Dr. Accili’s lab had shown that mouse intestinal cells can be transformed into insulin-producing cells; the current Columbia study shows that this technique also works in human cells.
The Columbia researchers were able to teach human gut cells to make insulin in response to physiological circumstances by deactivating the cells’ FOXO1 gene.
Accili and postdoctoral fellow Ryotaro Bouchi first created a tissue model of the human intestine with human pluripotent stem cells. Through genetic engineering, they then deactivated any functioning FOXO1 inside the intestinal cells. After seven days, some of the cells started releasing insulin and, equally important, only in response to glucose.
The team had used a comparable approach in its earlier, mouse study. In the mice, insulin made by gut cells was released into the bloodstream, worked like normal insulin, and was able to nearly normalize blood glucose levels in otherwise diabetic mice: New Approach to Treating Type I Diabetes? Columbia Scientists Transform Gut Cells into Insulin Factories. That work, which was reported in 2012 in the journal Nature Genetics, has since received independent confirmation from another group.
“By showing that human cells can respond in the same way as mouse cells, we have cleared a main hurdle and can now move forward to try to make this treatment a reality,” Dr. Accili said.
The key will be finding a drug that can inhibit FOXO1 in the gastrointestinal cells of people; Dr. Accili is now looking for suitable compounds.
Co-author Rudolph L. Leibel, MD, the Christopher J. Murphy Memorial Professor of Diabetes Research, professor of pediatrics and medicine, and co-director of the Naomi Berrie Diabetes Center at CUMC, said that “this work provides a new research tool for investigating the basic biology underlying the important relationships between the gut and insulin-producing cells, as well as a clear indication of the potential clinical utility of stem cell-based approaches to diabetes.”





Source Newsroom: Columbia University Medical Center
Citations
Nature Communications/DK58282,DK63608

The paper is titled “FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures.”

Highlights

  • Nescafé 3 in1 LifeCycle HEROES return from South Asia

    Donations for Nescafé 3in1 LifeCycle Challenge 2019 can be sent via sms: 5061 7370 = €2.33; 5061 8920 = €6.99; 5061 9229 = €11.65; or via a call to 5160 2020 = €10, 5170 2005 = €15; and 5180 2006 = €25. Bank details are Swift code VALLMTMT, IBAN number MT 18 VALL 22013000000014814521017, Bank name Bank of Valletta, Account number 14814521017.

    Read more...
  • Give a Gift this Christmas which gives back

    The story of medicine is the story of civilization, from an ancient craft of primitive magic and religion to the sophisticated field of science and technology of today.

    Read more...

Join

Connect with other Medical Professionals on fb in a closed facebook group

Login

Top
We use cookies to improve our website. By continuing to use this website, you are giving consent to cookies being used. More details…